

Low & High Temperature SOI CMOS

Sorin Cristoloveanu

- Context of SOI technology
 - Scalability issues
 - Trends in materials and devices
- SOI MOSFETs at low temperature
 - Properties and special mechanisms
 - Short-channel effects and reliability issues
- SOI MOSFETs at high temperature
 - Key parameters and mechanisms
- Innovating SOI devices
 - Extremely thin SOI MOSFETs
 - Double-Gate and 4-Gate MOSFETs

Moore's Law & SOI

Why SOI ?

Dielectric isolation: vertical and lateral (no latch-up)

Vertical junctions: reduced leakage and capacitance

Excellent tolerance of transient radiation effects

Simpler processing & high flexibility: no wells or trenches

Ideal structure for sensors, MEMS, high-temperature devices

Attenuated short-channel effects: enhanced scaling Low-voltage & low-power operation:

sharp subthreshold swing, reduced leakage, low V_T

Strategic Move to SOI

High performance μP:

IBM, Compaq, Motorola, HP, OKI, Samsung

- Low-Power/Low-Voltage: Epson, Melco, Tl
- Other markets: G3 portable phones, optoelectronics, MEMS, H-Temp, HV, imaging, smart cards
- New actors: Philips, Alcatel, Kopin, Gemplus, ST, etc

20% higher speed doubles the price of µP. SOI offers more than 20% gain in speed....

SOI Products

- High Performance Logic :
 - + performance driven, no cost sensitive at leading edge
 - + technology driver, moderate volumes
 - long development, circuit complexity
- Embedded solution:
 - + performance, relative simplicity, die shrink
 - cost sensitive & large volumes in mass production
- Communication & Smart Cards :
 - + low power/voltage well matching SOI
 - + computational talent
 - cost sensitive

UNI BOND

Smart Cut [Bruel '95]

- No etch-back needed
- Excellent crystal quality
- Thermal BOX
- High quality back interface
- Bonded interface below the BOX
- Film and BOX thickness adjustable
- High-grade active wafer recyclable
- Cheap support wafer: low cost
- Conventional equipment only
- High volumes

Eltran: wafer separation defined by a sacrificial layer of porous Si

The Horizon: New SOI-like Structures

Novel devices with enhanced performance and functionality

SOI = Semiconductor On Insulator

Why is cold silicon cool?

- Improved transport properties
 - higher mobility ($\mu \sim T^{-1.5}$) and saturation velocity (+ 50-100%)
 - velocity overshoot in ultra-short devices
- Better subthreshold swing (S ~T)
- Reduced leakage current (I ~ e^{-E/kT})
- Reduced electromigration & interconnect resistance
- Possible combination CMOS + superconductors
- Lower thermal noise
- Improved thermal conductivity of silicon
- Ideal for quantum and single-electron devices
- Improved speed for cryogenic operation

Performance oriented !!!

Threshold Voltage

At low T:

- Fermi level increases
- Threshold voltage increases
- Depletion depth extends
- Double slope: transition from partial to full depletion $dV_T/dT = 1.9 \text{ mV/K (PD, } \alpha = 1) \text{ or } 0.6 \text{ mV/K (FD, } \alpha = 0)$

$$\frac{dV_T}{dT} = \frac{d\Phi_F}{dT} \times \left(\alpha \frac{C_D}{2C_{ox}} + \frac{qD_{it}}{C_{ox}} + 2 \right)$$

Subthreshold Swing

- Excellent swing (10-20 mV/decade) has been measured below 77 K
- The transition from partial to full depletion occurs at a lower T for the swing than for the threshold voltage
- The swing decreases quasi-linearly with temperature ...
 unless the density of front/back interface traps increases at low T

$$S = \frac{kT}{q} \left(1 + \frac{qD_{it1} + \alpha C_{si}}{C_{ox1}} \right)$$

Mobility in SOI MOSFETs

- High electron mobility (3000 cm²/Vs) at low T
- Band splitting: higher mobility in the second subband
- Mobility degradation with V_G accentuated at low T
 - higher series resistance
 - larger coefficients $\theta_{1,2}$
 - possible negative transconductance

Low-T Mobility Laws

Scattering mechanisms

- ionized impurities (Coulomb) at low T: $\mu \sim T^{1.5} \times (Q_{inv})^{-1}$

- phonons at high T: $\mu \sim T^{-n} \times (Q_{inv})^{-1/3}$

- surface roughness: $\mu \sim T^{-1/3} \times (Q_{inv})^{-2}$

Bell-shaped variation

$$\mu_{eff} = \mu_0 \times \frac{(Q_{inv}/Q_c)^{n-2}}{1 + (Q_{inv}/Q_c)^{n-1}}$$

- n = 3, for T < 77 K
- n = 2, for T > 77 K

Drive Current

- Drain current can increase or decrease at low-T
- Impact of device architecture (inversion or accumulation mode, LDD, ...)
- Competing mechanisms
 - mobility, threshold voltage, series resistance (all increasing at low-T)

Series Resistance at Low-T

- R_{SD} increases for low T and low V_G
- Increasing V_G causes field-effect impurity ionization: R_{SD} = f(V_G) !!!
- Parameter extraction problems:

$$1/\mu \sim 1 + \theta_1(V_G - V_T) + \theta_2(V_G - V_T)^2$$
, with $\theta_1 = \theta_0 + R_{SD}C_{OX}W/L$

R_{SD} and θ depend on device architecture:

- LDD
- inversion or accum.
- gate overlap

Impurity Freeze-Out

- 77 K: weak freeze-out
 - R_{SD} increases \Rightarrow LDD optimization
 - lateral field decreases ⇒ less impact ionization
- 30 K : strong freeze-out
 - field-effect ionization (via V_G and V_D)
 - I_D(V_G) curves may change according to V_D
- SOI-like kink even in bulk MOSFETs
- Fully-depleted SOI MOSFETs
 - naturally kink free
 - suppressed kink-related excess noise
- Forget about body contacts

Special Effects in SOI MOSFETs at Low T

Noise:

- reduced thermal noise
- increased 1/f noise (higher D_{it})
- kink-related excess G-R noise

Transient & History Effects:

- longer transients:
 Δt ~ τ N_A/n_i (n_i decreases)
- history & frequency effects ???work needed

Short-Channel Effects in SOI MOSFETs

Charge sharing and DIBL:

- weak T-impact on $V_T(L)$: small variation of the depletion regions

Parasitic Bipolar Transistor:

- strongly attenuated: bipolar gain decreases at low T
- no latch at 77 K & higher breakdown voltage

Short-Channel Effects in SOI MOSFETs

Gate-Induced Drain Leakage (GIDL):

- due to carrier tunneling in the gate-drain overlap region
- base current amplified by bipolar gain
- reduced at low T
 - band-to-band tunneling & bipolar gain decrease

Reverse Short-Channel Effects:

- due to doping inhomogeneity near S & D
- highly reduced at low T
 - doping effects erased by freeze-out

Hot-Carrier Degradation:

- more severe at low T
- complex mechanisms
 - reduced bipolar effect, increased V_T, more or less drain current
 - higher gate current, enhanced trapping, more impact ionization
 - in very short-channels: less impact ionization non-stationary transport: reduced field peak & pinch-off region

Self-Heating in SOI MOSFETs

- Self-heating: $\Delta T = R_{TH}I_DV_D$
- △T increases in thin films, thick BOX, and low T
- Both R_{TH} and I_D increase at low T

How to Reduce Self-Heating? Just Use I in SOI ...

Replacement of BOX with thin buried alumina: R_{TH} is highly lowered

• ∆T reduced by 50 K !!!

Why is SOI a HOT topic?

High Temperature operation

- application oriented: oil industry, automobiles, aeronautics, ...
- trade-off: market opening vs. still acceptable performance
- bulk Si is very limited
- high-T semiconductors (SiC, diamond,...) are not ready yet for volume production
- High complexity IC's operate at increased T (self-heating)

SOI has strong arguments

- reduced leakage current
- attenuated threshold voltage shift
- feasibility in the 300°C range

Si Parameters at High Temperature

- Mobility and velocity saturation decreases: lower speed
- Higher density of states and intrinsic carrier density

Characteristics of SOI MOSFETs at High Temperature

- Reduced drain current
- Higher series resistance
- Degraded delay time in inverters

17

Leakage Current in SOI MOSFETs at High Temperature

- Leakage current increases exponentially $(E_A = E_G/2)$
- Still much lower than in bulk-Si
- For 300°C operation $I_{on}/I_{off} = 10^4$
- Wide temperature range

Subthreshold Characteristics of SOI MOSFETs at High Temperature

- Strong impact of leakage
- In Fully-Depleted MOSFETs
 - rather ideal swing S = 2.3 kT/q €
- Above 200°C
 - swing exponentially increases with T, due to higher leakage

Threshold Voltage Reduction at High Temperature

- Fully depleted SOI outperforms partially depleted and bulk-Si MOSFETs $\Delta V_T / \Delta T = -0.5$ mV/decade instead of 1.2-2 mV/decade
- Impact of film thickness, back-gate bias, and channel length
- Technology tunning: keep V_T large enough!

Short-Channel Effects in SOI MOSFETs at High Temperature

Increased DIBL
 (drain-induced barrier lowering)

$$V_T(V_D) = V_T(0) - a V_D$$

DIBL coefficient a increases with T

Carrier Mobility in SOI MOSFETs at High Temperature

- Low-field mobility: $\mu \propto T^{-1.8}$
 - dominated by acoustic phonons
 - weak impact of doping and roughness
- Mobility attenuation factors
 - $-\theta_1$ depends on Rs
 - $-\theta_2$ depends on surface roughness
 - $\theta_{1,2}$ decrease at high T

Self-Heating in SOI MOSFETs at High Temperature

- Reduced self-heating
- Due to lower mobility and current

Measurement of the temperature rise in partially depleted SOI MOSFETs

Parasitic Bipolar Transistor at High T

- Increased bipolar action: gain β ↑↑ with T
- Attenuated impact ionization: carrier multiplication ↓ with T
- Latch occurs when T (or V_D) increases

Transient Effects in SOI MOSFETs at High Temperature

- Increased lifetime
- Smaller time constant
- Shorter transients
- Reduced history effects

17

Floating-Body Effects in SOI MOSFETs

- FBE can be beneficial:
 - extra current
- Negative aspect:
 - subthreshold degradation
- How to suppress FBE ?
 - lifetime killing (unsuitable)
 - junction & halo engineering
 [Shahidi '99]

A new scaling-related effect:

FBE induced by gate tunneling

- second peak in transconductance
- suppression of current transients (overshoot & undershoot)
 [Pretet et al'02]

Reduction of Floating Body Effects at High T

As T increases, the 2nd peak is reduced. Why?

- ⇒ weak T-dependence of the direct gate tunneling current
- ⇒ strong increase of the junction recombination current
- ⇒ no junction engineering needed at high T

New Architectures: Double-Gate SOI MOSFETs

Why?

- Excellent electrostatic control
- Best solution for ultimate scaling, down to sub-10 nm channel length
- Enhanced performance : current and transconductance

But: Very difficult to process

Requirements:

- **≻Variable width**
- **>**Ultra-thin film ⇒ volume inversion
- >Uniform thickness
- >Low series resistance
- >Ultra-short channel
- ➤ Self-alignment of front / back gates ?

Double-Gate Structures

Technologies:

- gate stack
- tunnel epitaxy
- lateral epi growth
- bonding
- gate-all-around
- Delta
- Fin-gate
- SON

The 4-Gate Transistor: G4-MOSFET

- A JPL revolutionary device!
- Maximum number of gates
- G⁴-MOSFET = MOSFET + JFET
 2 lateral junction gates ⇒ JFET mode
 Front and back gates ⇒ MOSFET mode
- Standard partially-depleted SOI technology
- Depletion/accumulation device

Cross-section view

Arial View

G⁴-MOSFET: from Micro to Nano

- More negative bias on junction-gates ⇒ very narrow conductive wire
- All gates in depletion: conduction away from interfaces
 - ⇒ high mobility, low noise, immunity to radiations

Conclusions

- Low T operation of SOI MOSFETs: performance oriented
 - improved mobility, swing, speed
- High T operation : application oriented
 - SOI outperforms bulk-Si CMOS
 - lower leakage and Vt shift
 - SOI is needed !!
- Innovative devices are expected to operate better at low T
- Many aspects are still unclear at both low & high T
 - further studies necessary
 - device optimization adapted to the range of temperatures
 - appropriate design

